KoCoS Blog

Filtered by tag eppe Reset filter

KoCoS offers project planning and cabinet production for complete SHERLOG solutions

KoCoS is well known as a reliable manufacturer of high-quality test and measurement systems. However, only a few people know that KoCoS also designs and builds complete control cabinets according customer specifications and supplies them worldwide.

The installation concept of measurement data acquisition for network status and fault detection of electrical power supply networks and systems can be roughly divided into centralized and decentralized installations. Which concept is used is essentially decided by the individual conditions on site. It is therefore not surprising that a mix of both methods is often used.

 

Decentralized solution

In the case of the decentralized solution, compact measuring devices with a few analog and digital inputs are usually integrated into existing switchgear or protective cabinets and are used to monitor one or two bays. One advantage of this method is, for example, the low installation effort due to short cable runs, which also allow the measuring systems to be integrated directly into existing protection or measuring transformer circuits.

 

Centralized solution

In the case of the central acquisition solution, on the other hand, extensive measuring systems are required that have to record larger plant areas, entire voltage levels or even the entire plant. Several hundred measurement inputs are sometimes required for this application. Such measuring systems are then installed in dedicated cabinets in which all the necessary measuring points are brought together.

For such central systems, KoCoS supplies not only the measuring equipment but also, complete solutions in fully wired and tested cabinets.

To this end, KoCoS works out the target concept together with the customer and takes on all tasks from engineering to detailed planning, drawing production, cabinet manufacture, system parameterization and documentation.

Only high-quality components from well-known manufacturers are used in the construction of the cabinets and installed on site at KoCoS.

After commissioning and individual configuration, on-site or remote maintenance and service are also part of the range of services.

 

 

 

 

 

 

 

Any questions or additions on this subject? Then please use the comment function here on the blog or send an e-mail to mjesinghausen(at)kocos.com.

Modeling and generating power quality disturbances

Monitoring power quality (PQ) in the distribution system is an important task for energy suppliers and their customers. In a distribution system, various types of faults cause power quality disturbances. Power supply operation can be improved and maintained by systematically analyzing power quality disturbances.
The power supply is designed to operate with a sinusoidal voltage at a constant frequency. Power quality disturbances occur when the magnitude of the voltage, frequency, and/or waveform deviation change significantly due to various types of faults such as nonlinear loads, switching of loads, weather conditions, etc.
The effects of poor power quality depend on the duration, magnitude, and sensitivity of the connected equipment. Poor power quality can lead to process interruptions, loss of data, malfunction of computer-controlled equipment and overheating of electrical equipment.
It is important to detect and classify power quality disturbances. A variety of waveforms can be generated by simulations and be useful for disturbance detection and classification.
The waveforms of the possible disturbances are created in this description by mathematical models. The EPOS 360 three-phase signal generator and EPOS operating software are available for modeling and generating signals to analyze the events in the power system.

The mathematical models of the power quality signals can be implemented in the EPOS operating software by means of the "Signal Editor" module and generated with the EPOS 360 signal generator. The use of equations offers advantages as it is possible to vary signal parameters in a wide range and in a controlled way.
The following pictures show the different power quality signals which have been defined via the Signal Generator module.

Ideal voltage/current source
An ideal AC voltage source generates a continuous, smooth sinusoidal voltage.

Voltage fluctuations
A drop (undervoltage, voltage dips) or rise (overvoltage, swell) of the mains voltage of at least ½ cycle up to several seconds.

Voltage interruptions
A significant or complete voltage interruption. The interruption can be short-term but also permanent.
 

Harmonics
Distortion of voltage and current waveforms caused, for example, by operation of nonlinear loads.

Transients
A sudden disturbance in the line voltage that typically lasts less than one period and consequently the waveform becomes discontinuous.

In this description, the basis for generating typical power quality disturbances was presented. This signal generation solution includes the EPOS 360 signal generator supported by a PC with the EPOS operating software. The software includes the Signal Editor module, through which parameters such as amplitude, phase angle and frequency can be adjusted for signal generation. Furthermore, the Signal Editor module provides many other functions for adjusting the basic parameters, such as offsets, overlays and harmonics.
The hardware and software functionality makes it very easy to perform the generation of diverse waveforms. The generation of the previously defined waveforms is provided by four voltage and three current output channels of the EPOS 360. The signal generator can thus be used in procedures for testing instruments and devices for power quality measurement and analysis.

For more information, please refer to the following application notes:

  1. Signal generator EPOS 360 - A laboratory for power quality
  2. Three-phase signal generator for precise power network simulations

Do you have any questions about our measuring devices?
Then contact us via the comment function here on the blog or by mail to info(at)kocos.com.

EPPE CX

Power Quality Analyzer with universal connectivity

 

The widespread use of power quality analyzers increases transparency in our power grids and reveals dangers as well as potential savings.

EPPE CX records and analyzes the power quality according to common standards and generates the required reports automatically. Network faults or disturbances are recorded via the transient fault recorder with high resolution.

In parallel to the tasks of power quality and fault recording, EPPE CX can be used via standardized interfaces and protocols, as a data source for third party applications like automation solutions. It also provides real-time visualization of measurement and process data.

Third party systems and automation solutions can access the EPPE CX measurement and process data via the standardized and widely used MODBUS TCP protocol, which is also part of the basic equipment of most PLC systems.

In addition, EPPE CX has been equipped with a modern and powerful webserver interface to display live measurements in numerical and graphical views on all common internet browsers on PCs, smartphones or tablets. Using this feature the live measurements can be monitored from all over the world without the need to install specific software applications.

The widget concept of the browser allows to arrange application specific views easily for each user.

 

The web server is available from device software version 2.06.0000.