KoCoS Blog

Filtered by category 3D measurement and inspection Reset filter

Electric mobility is a core component of climate-friendly mobility and innovation worldwide. Electric vehicles generate significantly less CO2, especially when combined with renewably generated electricity.
The research, development and production of batteries and battery cells is becoming increasingly important in this context. In addition to performance, the sustainability of batteries plays an important role. But even more decisive is an efficient overall concept consisting of e-motor, battery and the battery management.
LOTOS 3D measurement systems can support the production of various components from this overall concept effectively and sustainably by 100% control.
For this purpose, the geometry of the components is checked and evaluated for specified tolerances in second cycles. The loading can be implemented manually or fully automated by means of different automation components.

In vehicle construction, the dimensional accuracies between the parts of the drive or the entire drive train play an important role for the vibration behavior on the vehicle. Especially at high speeds and torques, deviations from the nominal values become noticeable through noises and vibrations or, in the worst case, through malfunctions and lead to quality loss or even total breakdown.

It is therefore necessary to check an increasing number of geometries for their exact dimensional accuracy. In addition, established tactile measuring methods and inspections using tracing gauges can no longer cope with the required production cycle times in view of the increasing number of dimensions to be inspected.

The degree of automation required in modern production facilities demands fast and fully automated component inspections that are directly integrated into the production process.

With LOTOS 3D measuring systems, drivetrain components can be inspected quickly and reliably for dimensional accuracy. Furthermore, the parts can be classified and sorted directly into different tolerance zones.

For this purpose, the test parts are placed on the measuring system either manually by hand or fully automatically via robot. Automatic quality inspection is then performed for both external and internal dimensions using predefined measuring programs.

This can be, for example, the geometric inspection of a drive shaft: (LOTOS Video)

Inspection of tube geometries with LOTOS 3D measuring systems

Precise inspection of various processing steps in tube manufacturing is gaining enormous importance. On the one hand, it is important to automate processes, on the other hand, it is indispensable for a cost-efficient production to detect rejects as early as possible.
If defects are only detected during the final inspection or even after delivery to the customer, they lead to extremely high costs.
The requirements for accuracy and fast, process-reliable inspection, up to 100% inspection of the components directly in production, are constantly increasing.

The LOTOS 3D measuring systems are used both for quality inspection of the tube pieces and for process control and defined alignment for the next processing steps.

Thereby LOTOS systems check for example:

  1. Geometries from cross-sectional contours through to free-form surfaces
  2. Positions and geometries of holes and laser cutouts
  3. Length, straightness, perpendicularity and flatness of the tube pieces
  4. Processing states of tube ends, such as chamfers or fillets of tube edges
  5. Correct alignment to a defined position based on geometric features

Quality assurance by geometric measurements increasingly becomes important not only in the final inspection. The control of dimensional accuracy is progressively shifting to the beginning of the manufacturing processes in order to detect and minimize rejects at an early stage.
The 3D measuring systems LOTOS are suitable among other applications for the exact measurement of ingots, which represent the beginning of the production process of semiconductor wafers. In order to obtain the optimum yield of wafers from the ingots, a highly accurate geometry determination at the beginning of the manufacturing process is more important than ever.

High-precision measurements of the ingot are critical to the quality and productivity of the wafer cutting process. Only an exact geometry allows to set perfect cuttings.

A solution using mechanical measurements is possible, but very susceptible. The material is very brittle, so mechanical impacts can easily cause micro cracks invisible to the human eye. These lead to wafer breakage in later process steps and thus to cost-intensive rejects.

The advantages of geometry inspection of ingots with LOTOS 3D measuring systems are:

  1. Less waste and scrap of the expensive materials
  2. Optimal utilization of the cross-sectional area of the ingot increases productivity
  3. Contactless measuring method allows a solution without mechanical stress of the material, micro cracks due to mechanical stress are therefore excluded

The following video shows the measurement of an ingot with LOTOS


As well as the scan result as 3D visualization


LOTOS LT is a flexibly applicable standard measuring system and extremely cost efficient.
It is suitable for a wide range of applications in the automotive industry, in the field of medical technology, in the plastics and packaging industry, and also for fully automated testing of construction and insulation materials.

It has a height-adjustable operating touch screen and an integrated evaluation unit. Thanks to the small footprint, this standard module is extremely space-saving. The integrated evaluation unit ensures fast and fully automatic measurement evaluations. Inside, the LOTOS LC has various connection options to extend it with peripherals such as code readers. The stand-alone device is suitable for use in a production environment as well as in laboratory or measuring room.

Test parts can be measured at extremely high speed for 2D dimensional tolerances, as well as completely in 3D.

Example of measuring insulation materials:

Video of a measurement run:

Graphical measurement results: