KoCoS Blog

Filtered by mjesinghausen Reset filter

EPPE CX

Power Quality Analyzer with universal connectivity

 

The widespread use of power quality analyzers increases transparency in our power grids and reveals dangers as well as potential savings.

EPPE CX records and analyzes the power quality according to common standards and generates the required reports automatically. Network faults or disturbances are recorded via the transient fault recorder with high resolution.

In parallel to the tasks of power quality and fault recording, EPPE CX can be used via standardized interfaces and protocols, as a data source for third party applications like automation solutions. It also provides real-time visualization of measurement and process data.

Third party systems and automation solutions can access the EPPE CX measurement and process data via the standardized and widely used MODBUS TCP protocol, which is also part of the basic equipment of most PLC systems.

In addition, EPPE CX has been equipped with a modern and powerful webserver interface to display live measurements in numerical and graphical views on all common internet browsers on PCs, smartphones or tablets. Using this feature the live measurements can be monitored from all over the world without the need to install specific software applications.

The widget concept of the browser allows to arrange application specific views easily for each user.

 

The web server is available from device software version 2.06.0000.

Share of renewable energy is constantly increasing

In Germany, the share of renewable energies in 2019 was about 43% of gross electricity consumption. In total, about 242.5 billion kWh of electricity were generated from renewable energy sources. 

The aim is to increase the share to 65% by 2030.

The rapid expansion of renewable energy sources in the electricity sector worldwide is definitely the right way forward. However, it also generates undesirable side effects. For example, the structure of the electricity grid, which has grown over decades, is in many parts not designed for decentralized power generation. Many sections of the grid are already operated at the limits of their capacity. The more the decentralized expansion progresses, the more demanding and more difficult it becomes to monitor and ensure Power Quality .

Factors that accelerate the expansion of PQ measurements

The increased demand for PQ measuring points is a direct consequence of the expansion of renewable energy sources and the associated changes to the basic architecture of power supply networks.

There is a continuous and increasing change from a centralized generation model to a decentralized model in order to be able to integrate more and more renewable energy sources - often in smaller power categories and in highly distributed design.

This new model fundamentally changes the characteristics and the electrical signatures flowing in the system.  A change that creates an increasing and urgent need for accurate measurements of power quality at more and more locations within the distribution network. These measurements are not only used to record and monitor quality parameters, but also to detect undesired interactions between network components, which often occur only under certain operating conditions and can lead to shutdowns, unstable operating conditions or a reduction in performance.  

The fundamental changes in our power generation and distribution systems make it necessary to take the monitoring of power quality and the complete recording of all network processes even more seriously in the future.

Conclusion

 

Our measurement systems of the EPPE and SHERLOG product line offer a reliable and robust platform and can be used on all voltage levels.