KoCoS Blog

Filtered by category Protection relay testing Reset filter

Answer: Nothing! Because when we talk about GOOSE at KoCoS, we usually don’t mean the animal but the network protocol I protection technology. Further answers to the question of what GOOSE is all about and what role the latest ARTES update plays in this context can be found here. 

The IEC 61850 standard of the international Electrotechnical Commission (IEC) describes, among other things, a general transmission protocol for protection and control technology in medium and high voltage substations (station automation). One topic of this series of standards is the “Generic Object Oriented Substation Events”, in short GOOSE messages. 

But what is the significance of these GOOSE messages in a substation? 
In simple terms, GOOSE messages are used to exchange information such as status messages or excitation signals between the IEDs (Intelligent Electronic Devices) of the station. These information are distributed as an Ethernet packets via the process bus of the substation.

With an update to follow in the next few days, the test systems of the 4th ARTES generation can also be integrated into a corresponding environment to evaluate these signals. Thanks to the powerful signal processor of these test systems, they can be connected directly to the process bus, so that the evaluation of GOOSE messages can take place in real time.

Since a large number of GOOSE messages can be present in a network, but only the information of individual ones is of interest for the protection test, the exact structure of the required GOOSE message must be known. For the correct parameterization of ARTES test systems, a relay-specific configuration file is required. This file contains all information regarding the structure of the GOOSE message and its content. The ARTES 5 software analyses the configuration file and the desired signal can be selected. 

After the appropriate parameterization has been carried out, a GOOSE message can perform the same functions as the already used hardware inputs of the ARTES test systems.

Still questions? Then please use the comment function here in the blog or send an e-mail to bfleuth(at)kocos.com

Create ACI codecs yourself....

Enabling users to create their own codecs for their own needs was a requirement we placed on our latest ARTES innovation. The necessary basic knowledge of program development, especially in processing files, is already available to many users. Not much more is needed!

...or have it created by the specialist

Should the required skill be absent or short on time, KoCoS and its partners are ready to help. In cooperative collaboration, the required information and a sample file can be worked out by the user, and the KoCoS specialists will then take care of implementation. The codec created is then included in the standard so that it is available to all users.

Insight into the "secrets" of codec creation

As already described in the previous article, the ACI codec can be used to transfer any settings from an external file into the ARTES 5 software. ACI Codec is a collective term that summarizes different programs, the codecs. A codec is always adapted to a certain format of the source file. Since the source file can have any format, the complexity of the codec generally depends on its structure.

Preparations

Since a codec maps the parameters of an output file to the parameters of ARTES 5, it is recommended to first define the links in the form of a table. Any necessary adjustments or conversions of the parameters to be read in can also be entered. These are then implemented in the codec itself.
 

Creation of an Empty Codec

A C#-project can be created automatically from within ARTES 5. This provides methods and properties on the basis of which the ARTES software can be parameterized. The structure of the created project automatically provides the possibility to read any file. 

Assignment of parameters

Since the concept of ACI-Codec is based on the principle of object-oriented programming, the basic structures of ARTES 5 could be mapped as far as possible by the methods and properties. This enables a similar procedure to be followed when creating a codec as when creating a test object in ARTES 5.
To show the basics of creating a codec, static values are assigned to a test object in the following example. For a mature codec, these must be replaced by variables and linked to values in the source file.  
As in ARTES 5, a new test object must first be created. Afterwards the parameters of the test object can be provided with the corresponding values. Depending on the integrated development environment (IDE) used, the Intellisense function simplifies this process considerably.

The created parameter is now assigned values for the "General Information" and "Rated and Limit Values". 

Elements such as functions and the characteristics they contain must be added to the test object in the software interface before values can be assigned, the same procedure is followed in a codec.

How it all began

As early as the beginning of the 1990s, KoCoS was able to offer products and solutions in the field of disturbance recording and switchgear testing which were unique in terms of their precision, functionality and simplicity of handling and operation. The basis for numerous innovations was a completely new hardware platform in 32-bit multiprocessor technology. 

 

DMSS - Digital Measurement Simulation System

For the research, development and product testing of these new device generations, a special signal generator was needed, which was not available due to the special requirements. In order to ensure compliance with the specifications and the quality of the products, a special signal generator, the Digital Measurement Simulation System DMSS, was developed. With this system, it was possible to generate any signal waveforms synthetically by using software and to output them as high-precision analogue values via the appropriate hardware.

At that time, the first digital protection relays were already in use. Their functionality also made great demands on the devices needed for testing. For the most part, conventional test equipment was still in use for relay testing, in which transformers were used to generate the signals. However, these devices were not sufficient for testing digital protection relays.

With the Digital Measurement Simulation System DMSS, KoCoS had developed a signal generator that could also serve as the ideal basis for a new generation of relay test systems. What was still missing were components for measuring analogue and binary quantities as well as current and voltage amplifiers to provide the test values with the necessary amplitude and power.

 

Ideas, innovations and a new standard

The decision was quickly made to develop a relay testing system. For the measurement part, there were already sufficient solutions available from earlier developments. So "only" powerful and precise current and voltage amplifiers were needed.

But before the development could really get started, a precise specification for the new system had to be created. Of course, we first looked at what the market had to offer specifically for testing digital relays. There was not a lot. In fact, very few, and it was therefore not difficult to find a lot of ideas for the new system. Talks with users in the field of secondary technology, with whom we already had contact from the fault recorder application, were certainly helpful here.

The most important requirement, however, was defined by the management. On the one hand, the new relay testing system should be significantly more powerful and cheaper than the products available on the market. On the other hand, it should have unique selling points and advantages that offer the user a high benefit.

In addition, the new system should also define the future standard for professional testing systems. Not an easy undertaking, but it was completely fulfilled with the introduction of the ARTES 440 25 years ago. The many innovations and special features that the first ARTES 440 already had to offer will be discussed in more detail in future articles about the ARTES USPs.

 

Lightweight and compact,

or bigger and heavier than expected?

At first glance, it seems that the ARTES RC3 is the little brother of the ARTES 460 because of the smaller number of inputs and outputs, just extremely robustly packed. It would therefore be expected that the RC3 would also be more compact and lighter than the ARTES 460. According to the specification, however, this is not so.

During the development of the ARTES RC3, high demands were placed on its robustness, reliability and durability. The basis for these requirements was already given with the 4th ARTES hardware generation. This has already proven itself in the ARTES 460/600 and is considered one of the most robust, if not the most robust hardware platform of all relay test systems on the market.

For the integration of the components into the RC3, a specially stable mechanical construction has also been developed inside a hard-shell case. Due to the construction and the robust and resistant hard-shell case, even hard shocks and vibrations have little effect on the RC3.

The dimensions and weight are higher for the first time.  In practice, however, this looks quite different. A relay test system is rarely used in the laboratory or in the workshop. Rather it is transported to the application site. And especially during the transportation the size and the weight are very important. Later during work the test system is moved rather less.

For safe transport, ARTES 460 is equipped with a robust transport box specially designed for this purpose. Inside the box there is a hard foam insert which fits the device and the cable set perfectly and which determines the external dimensions of the box.

Due to its construction in a robust hard-shell case, no additional transport box is required for the ARTES RC3. In comparison, it is a very compact and lightweight system which is very easy to handle in practice. This also makes the ARTES RC3 ideal for demanding outdoor use in rough environmental conditions. Larger and heavier than expected? Rather not.

Useful addition to the ARTES product line

With the ARTES 460 and ARTES 600, two very capable test systems are offered which provide almost all functions for protective relay testing. Where does the ARTES RC3 come in here and how does it differ from the other systems? 

ARTES RC3 has some features and advantages that are particularly useful for certain applications and target groups.

 

Renewable energy generation plants, especially wind turbines and solar parks, have become more and more important worldwide in recent years. In these plants there are special relays, such as the Q-V protection, which have to be checked regularly.

Energy suppliers and grid operators are often not in a position to comply with the tests due to the large number of installations and are often not the operators of these plants. The testing of protective relays is therefore more and more carried out by service companies.

 

The aim of developing the ARTES RC3 was to take into account the special requirements of these service providers or service companies. The new RC3 is also suitable for almost all other protection tests in the field of electrical power supply.

There are certainly some limitations due to the number of current amplifiers when testing differential protection relays. However, tests of frequency, voltage, overcurrent, distance protection and many other protection relays can be carried out just as well and efficiently with the ARTES RC3. In addition to the local operation, the new ARTES 5 software with all its special functions is also available for the RC3.

 

But what are the criteria that are especially important to service companies? Due to the number of test systems required, price is certainly a very important criterion for many customers. What they are looking for is a cost-effective solution that provides all the necessary functions but does not contain additional, expensive features that are not required for the specific application.

Another important point is the robustness of the device. The environment in which the tests are carried out often does not meet that of many conventional plants. Harsh environmental conditions are often encountered in regenerative energy generation plants. The high demands on robustness, reliability and durability were particularly taken into account in the development of the ARTES RC3. The RC3 is very well protected due to its design in an extremely robust hard-shell case.

 

And last but not least, the possibility of being able to carry out tests completely without a PC is often very useful for tests in regenerative energy generation plants. Even the test results of the RC3 can be read out via smartphone without a PC using the new ARTES app and clearly displayed in a test report. This report can also be sent by e-mail as a PDF file directly on site. 

 

 

The ARTES RC3 should therefore not be seen primarily as a replacement for the ARTES 460 or ARTES 600. Rather, it complements the product line in a meaningful way and offers exactly what a large customer base specifically needs.