KoCoS Blog

Filtered by tag vacuum Reset filter

Thanks to the excellent, semi-automatic self-learning procedure for determining the sensor parameters (recipes) of the INDEC vacuum inspection systems, commissioning is possible without a KoCoS technician.

Ensuring the highest product quality is a primary and indispensable objective, especially in food production. The tightness of the product containers are an important role in this.

Leaks can cause the contents to leak out. But it is much more important that germs penetrate the container and spoil the product.

The INDEC vacuum testing systems monitor the tightness of containers fully automatically directly in the production process. A wide variety of containers such as bottles, jars and cans are checked for leaks without contact and defective containers are removed from the product flow.

Often, the necessary technician charges for commissioning, especially in Europe or overseas, are not in good proportion to the purchase price of an INDEC system. Sometimes these costs amount to another 30-40% of the purchase price for the equipment.

For this reason, it is very important to have good and meaningful documents such as the operating instructions and suitable videos. We have all those resources in good quality with the INDEC vacuum inspection system.

To make the start easier for the customer, we offer to send us some bottles and jars from his range. We already save predefined sensor parameter sets (recipes) in his ordered INDEC device ex works. If fine-tuning is still required, this can be completed between the end customer and us using modern communication media.

This has already been proven several times in the past, both in Germany with the company STANGL, in the EU with the French company ANDRESY and overseas with PRINCES TUNA in Mauritius. These screen shots illustrate the self-learning process.

The system automatically adjusts the threshold to distinguish between good and bad containers. The more containers are fed to the tester, the more representative the result is for a good separation of good and bad containers.

Due to the excellent, semi-automatic self-learning procedure for determining the sensor parameters (recipes) of the INDEC vacuum testing systems, it is possible for the customer to commission the system on his own. The use of a KoCoS technician or a technician from our local representative on site is not mandatory.

Reliable operation of all INDEC vacuum inspection systems under the most difficult operating conditions such as vibrations of the conveyor belt.

The vacuum inspection systems of the INDEC series offer our customers a reliable solution for leak testing of jars, bottles and metal cans even under extreme operating conditions. The inspection takes place contact-free as a 100% in-line inspection directly in the production process. An optical sensor detects the vacuum-induced deformation of the lids. Even non-metallic container closures can be inspected. Containers with insufficient vacuum, crooked or missing lids are reliably detected and can be separated fully automatically from the product flow with an ejector. All components are made of stainless steel (1.4404), are resistant to cleaning agents and disinfectants and meet the requirements of protection class IP69K.

How do vibrations of the conveyor affect the reliability of INDEC systems?
We are often confronted by our customers with the question of whether the INDEC systems still function reliably when the conveyor belt is vibrating. This question can be answered with an unequivocal yes.
For this purpose, we would like to refer again to the measuring procedure and the mode of operation of all INDEC systems. The test procedure is based on the determination of the vacuum-induced deformation of the passing container closures. The tightness of the containers is assessed by comparison with a previously “Golden” sample. If a container to be inspected interrupts the light barrier under the sensor head, an infrared light beam is emitted by the sensor head and reflected by the lid of the container.  A sophisticated algorithm calculates the concave shape (yellow curve between the two red arrows, see the figure below measuring principle) of the deformed lid caused by the vacuum in the head space. Depending on the given boundary conditions, vacuum tests are possible from
50 µm deformation or from 150 mbar differential pressure in the headspace to the external pressure.

To illustrate the correct operation of the INDEC models even when the conveyor belt is vibrating, see the following video. From 0:34...0:50 min, artificial vibrations are triggered on the sensor head - analogous to vibrations of the conveyor belt - the INDEC system continues to work correctly in that only when passing the opened bottle marked with the white tape does the signal lamp briefly light up for a container without vacuum.  

Link: cloud.kocos.com/index.php/s/9gkyCKcps5g3rpk

Avoid product recalls even before the goods leave production - with reliable vacuum inspection systems from KoCoS.

Ensuring the highest product quality is a primary and indispensable goal, especially in food production. One of the standardized methods for preserving food without the addition of preservatives is vacuum packaging. By reliably lowering the oxygen partial pressure inside the container, the growth of spoilage germs is suppressed and thus the minimum shelf life of these foodstuffs is significantly extended. However, if the vacuum packaging is not absolutely flawless and has leaks, food can spoil long before the stated expiry date.

Vacuum inspection for bottles, jars and cans

The test procedure is based on determining the vacuum-induced deformation of the container closures as they pass through. The tightness of the containers is assessed by comparison with a previously Golden sample. Depending on the existing basic conditions, vacuum tests are possible from 50 µm deformation or from 150 mbar differential pressure in the headspace to the external pressure.

 

The INDEC systems work with an optical infrared sensor head. This means that metallic and non-metallic closures can be inspected equally. Starting with flow-rates of up to 600 pieces/min in the basic model, up to 1,200 pieces/min are achieved in the highest expansion stage for cap sizes of 30...110 mm diameter.

Convincing advantages through optical measuring method

The optical measuring method of the INDEC model series has a number of satisfying advantages compared to conventional methods. Due to the large working distance of the sensor head of more than 100 mm, the system is able to fully tolerate a wide range of deviations caused by dimensional deviations of the containers, horizontal track misalignment of the test samples and the unavoi-dable inaccuracies in the manual height adjustment of the sensor head.

Even vibrations of the conveyor belt and occasional drops of water on the caps do not affect the correct operation of the INDEC system, in contrast to other measuring methods.

INDEC the business insurance

Complaints, image damages, loss of customers and high costs are possible consequences of leaking vacuum packaging. The consequences can be serious, especially for the existence of small and medium-sized companies. The use of appropriate vacuum inspection systems should therefore be a matter of course wherever vacuum packaging is produced.

Unfortunately, the consistent use of effective inspection systems in companies that fill food is not a matter of course. During our on-site visits, we repeatedly see production facilities where no such inspection technology is used. The INDEC inspection devices are easy to integrate into existing plants and offer the possibility of updating existing measuring technology to a modern standard at low costs. As a complete installation, the turnkey INDEC test systems offer an "all-round carefree package" with which reliable quality assurance can be achieved quickly and easily.