KoCoS Blog

Gefiltert nach Kategorie Resistance measurement Filter zurücksetzen

Immer häufiger wird in der Fabrik oder im Labor eine Automatisierung im Bereich der Niederohmmessung gefordert. Sei es im Bereich Automobilindustrie/Elektromobilität, bei der Untersuchung von Löt- oder Schweißverbindungen von Hochstromverbindungen oder bei vielfältigen anderen Anwendungen.

Für besondere Anforderungen, wie z.B. beim Einsatz in Prüfständen, gibt es zur Steuerung und Messung mit den Widerstandsmessgeräten PROMET R300/R600 die einfach zu verwendende Programmierschnittstelle PROMET PI. Diese kann sowohl in COM/ActiveX-unterstützenden als auch in .NET-Umgebungen eingesetzt werden.
Durch einmaliges Programmieren des Messablaufes ist es über die Programmierschnittstelle möglich, die Widerstandsmessgeräte PROMET R300 oder R600 in das Prüfequipment einzubinden und Messungen automatisiert durchzuführen.

Mit der Programmierschnittstelle wird ein Treiber installiert, über den die angeschlossenen Geräte angesprochen werden. Die Kommunikation zwischen der Software/PC und dem externen PROMET R300/R600 wird durch die installierte ActiveX-Komponente ermöglicht. Diese erlaubt die Kommunikation über USB- oder Ethernet-Schnittstellen.
Als Beispiel wird zur Steuerung von PROMET R300/R600 und zur Auswertung der Messergebnisse in dieser Beschreibung ein Excel-Tabellenblatt verwendet, über das die programmierten VBA-Makros (Visual Basic for Applications) ausgeführt werden. Programme können entsprechend der Bedürfnisse geändert und angepasst werden.

Die Präzisionswiderstandsmessegeräte PROMET R300/R600 sind aufgrund ihrer Messung in Vierleitertechnik und der Fähigkeit, sowohl Strom als auch Spannung genau zu messen, ein ideales Werkzeug zur Charakterisierung von Komponenten für einen hohen Strom und einen niederohmigen Widerstand. 
Wie im Artikel aufgezeigt, kann ein über externe Software gesteuertes Widerstandsmesssystem auf einfache Weise in eine automatisierte Anwendung eingebunden werden. Die Verwendung der Widerstandsmessgeräte PROMET R300/R600 zur Durchführung solcher Messungen vereinfacht den Prüfaufbau, verkürzt die Programmierzeit und ermöglicht effiziente Prüfabläufe.

Weitere Informationen zur Verwendung der Programmierschnittstelle PROMET PI finden Sie im Applikationsbericht PROMET R300/R600 - Die intelligente Art der Widerstandsmesstechnik!

Sie haben Fragen zur Widerstandsmessung oder zu unseren Messgeräten? Dann kontaktieren Sie uns über die Kommentarfunktion hier im Blog oder per Mail an info(at)kocos.com.

PS:
Auch der dreiphasige Signalgenerator EPOS 360 lässt sich über die Programmierschnittstelle EPOS PI in einer ähnlichen Form in eigene Prüfapplikationen einbinden!

Widerstandsmessung mit PROMET - Ohm sei Dank!

Nachdem Alessandro Volta 1801 mit der sogenannten Volta-Säule eine Quelle schuf, die elektrischen Strom lieferte, war es möglich, die Wirkungen des elektrischen Stromes zu erforschen. Viele Forscher machten zahlreiche Entdeckungen und Beobachtungen, jedoch die rätselhaften Auswirkungen des elektrischen Stromes konnten nicht enthüllt werden.

Erst durch die Entdeckungen und Forschungen von Georg Simon Ohm konnte der Sachverhalt ergründet werden. Ohne seine Erforschung und ohne die daraus resultierenden Grundlagen des Ohm‘schen Gesetzes wären die herausragenden Entwicklungen der Elektrotechnik nicht möglich gewesen.

Georg Simon Ohm, geboren am 16. März 1789 in Erlangen, gestorben am 6. Juli 1854 in München, war ein deutscher Physiker.

Das entscheidende Messinstrument zur Entdeckung der Ohm’schen Gesetze war die von Ohm konstruierte Drehwaage. Die Drehwaage besteht aus einem Thermoelement (A), bei dem die Enden auf unterschiedlichen, aber gleichmäßigen Temperaturen (B) gehalten werden. Einer Magnetnadel (C) an einer einstellbaren Aufhängung (D) und einer Vorrichtung mit der die verschiedenen Testleiter (E), d.h. der variable Widerstand, kontaktiert werden können.

Wird ein Testleiter angeschlossen, sodass ein Strom fließt, wird die Magnetnadel abgelenkt. Die Stellung wird auf einer Skala abgelesen. Die Ablenkung bzw. die abgelesenen Skalenwerte bilden ein proportionales Maß für die magnetische Wirkung des elektrischen Stromes, somit die Stromstärke.

Ohm konnte aus diesen Messungen auf das Gesetz schließen:
I = Uq / (Ri + Rv)
Stromstärke = Quellenspannung / (Innenwiderstand + variabler Widerstand)

Ohm veröffentlicht seine Ergebnisse 1826 und fand zuerst wenig Anerkennung. Erst 1841 erhielt Ohm als Auszeichnung für seine Arbeiten die Copley-Medaille der Royal Society of London, die dem heutigen Nobelpreis entspricht. 1893 wird von dem Elektrischen Welt-Kongress in Chicago die Bezeichnung „Ohm“ (Zeichen Omega: Ω) für die Einheit des elektrischen Widerstandes vergeben. 

Mit der Ohm‘schen Drehwaage ist in diesem Beitrag nur der erste Schritt der Entwicklung von Widerstandsmessgeräten beschrieben. Die Geschichte der Widerstandsmessung zeigt die Veränderungen vom Zeitalter der frühen Experimentatoren bis zum heutigen Computerzeitalter, d.h. von Messbrücken über erste elektronische Geräte bis zu den heutigen digitalen Messsystemen. Die Entwickler nutzten immer die neuesten Ideen und Systeme, um die Produkte nützlicher und bedienfreundlicher zu machen. Durch den technischen Wandel wurde die Entwicklung der Messgeräte vorangetrieben und technologische Fortschritte realisiert.

 

KoCoS fühlt sich dieser Entwicklung verpflichtet und bietet mit der PROMET Serie eine vielfältige Produktpalette an Widerstandsmessgeräten. Mit den PROMET Präzisions-Widerstandsmessgeräten werden niederohmige Widerstände im μΩ- und mΩ-Bereich bestimmt. Mit einstellbaren Prüfströmen von bis zu 600 A in Verbindung mit einem Vierleiter-Messverfahren liefern die Systeme Messergebnisse für höchste Genauigkeitsanforderungen. Typische Anwendungen sind z.B. die Bestimmung des Kontaktwiderstandes von Schaltgeräten und die Widerstandsbestimmung an induktiven Lasten wie Transformatoren. Der Einsatz modernster Leistungselektronik und das robuste Design garantieren maximale Zuverlässigkeit für den mobilen Einsatz, aber auch für stationären Einsatz im Labor und der Fabrik.

Sie haben Fragen oder Ergänzungen zur Widerstandsmessung oder zu unseren Messgeräten? Dann kontaktieren Sie uns über die Kommentarfunktion hier im Blog oder per Mail an info(at)kocos.com.

Arbeitszeitersparnis durch gleichzeitige Widerstandsbestimmung an drei Messstellen

Bei Schaltanlagen in der Mittelspannungs- und Hochspannungsebene muss gemäß der Schaltanlagen-Norm IEC 62271-1 eine statische Widerstandsmessung des Hauptstromkreises durchgeführt werden, um eine unzulässige Erwärmung des Strompfades auszuschließen.

Herkömmlich werden die Messungen nacheinander und einzeln an jeder Phase durchgeführt. Der Hauptstromkreis wird mit 100 A Gleichstrom beaufschlagt und der Spannungsfall gemessen. Bewegt sich der Messwert, d. h. der Spannungsfall innerhalb der vorgegebenen Grenzwerte, ist die Prüfung bestanden und die Ergebnisse können aufgenommen/gespeichert werden. Dieses Messverfahren ist zeitaufwendig, da die drei Phasen nacheinander geprüft werden.

 

Das Verfahren ist nicht nur in der Schaltgeräteprüfung einsetzbar, sondern auch in Applikationen wie z. B. im Bereich E-Mobilität, in denen mehrere Widerstände zur gleichen Zeit erfasst werden müssen.

Bei weiteren Fragen hinterlassen Sie einen Kommentar oder sprechen Sie uns direkt an.

Um die Produktivität zu steigern und die Ausfallsicherheit zu verbessern, kann das Messverfahren zur Widerstands- und Spannungsfallmessung mit dem PROMET R300 oder R600 optimiert werden.

Die Ausstattung der Widerstandsmesssysteme PROMET R300/R600 mit drei Spannungsmesseingängen erlauben die parallele Messung an drei Messstellen, um beispielsweise statisch den Widerstand von drei Hauptkontakten messen zu können.

 

Um eine zeitgleiche Messung von drei Hauptkontakten durchzuführen, sind die Prüfobjekte in Reihe zu schalten und mit einem Prüfstromanschluss zu versehen. Da eine Vierleitermessung ausgeführt wird, ist darauf zu achten, dass die Spannungsanschlüsse zwischen den Hochstromanschlüssen liegen und dass sie genau an den Punkten angeschlossen werden, über die der Widerstand bestimmt werden soll.

Anschlussbeispiel für eine Messung an drei in Reihe geschalteten Prüfobjekten, wie z.B. drei Unterbrechereinheiten.

Im Stand-alone Modus können die drei statischen Widerstandsergebnisse mit den Messdetails (tatsächlicher Prüfstrom und Spannungsfall, Messbereiche usw.) im Messgerät gespeichert werden.

 

Mit einer einfach zu bedienenden PROMET-Software können die im Gerät gespeicherten Daten ausgelesen und verwaltet werden. Die übersichtlich dargestellten Messergebnisse können zudem in einem PDF-Prüfbericht ausgegeben oder als CSV-Daten exportiert werden.

Das beschriebene zeitgleiche Messverfahren zur Erfassung von drei Widerständen spart somit Arbeits-, Umrüst- und Messzeit!

Als weitere Automatisierungsmöglichkeit sind PROMET R300/R600 mit Schnittstellen zur Anbindung an die Software zur Schaltgeräteprüfung ACTAS 2.60 ausgestattet. Über die ACTAS-Prüfsoftware ist die Widerstandsmessung komfortabel einzubinden. Auch ohne ein zusätzliches ACTAS-Prüfsystem sind so automatisierte Prüfabläufe und eine umfassende Analyse der Prüfungsergebnisse ohne weiteres durchführbar.

Verwenden der Kelvin-Prüfspitzen KP 200 zusammen mit PROMET R300/R600

Die Kelvin-Prüfspitzen KP 200 wurden für eine sichere und einfache Widerstandsmessung an schwer zugänglichen Messstellen entwickelt. Das Prüfspitzenpaar ist mit federnden Hochstrom- und Spannungskontakten für die Ermittlung niederohmiger Widerstände nach der Vierleiter-Methode für einen Prüfstrom bis 200 A ausgestattet.

 

Können die Prüfspitzen zusammen mit den Widerstandsmessgeräten PROMET R300 oder R600 verwendet werden?

Die PROMET R300/R600 sind mit 13 mm Hochstrombuchsen zum Anschluss von 50 oder 70 mm² Hochstromleitungen ausgelegt. Mit den Reduzierstücken 13/9 von 13 mm auf 9 mm Buchsen-/Steckerdurchmesser ist es möglich Hochstromkabel mit kleinerem Querschnitt und 9 mm Steckern bzw. Buchsen an das PROMET R300/R600 anzuschließen, wie zum Beispiel den Kabelsatz CS 205 (2 x 5 m, 25 mm²). 
Mit diesen Leitungen ist es nun möglich die Kelvin-Prüfspitzen KP 200 mit den PROMET R300 oder R600 zu verwenden.

 

Weiterhin wurde in die Stand-Alone Bedienung der PROMET R300/R600 ein Messmodus für den sicheren Einsatz der Kelvin-Prüfspitzen KP 200 implementiert (ab Firmware Version FWP 1.5).
Entsprechend der Maximalbelastung der Kelvin-Prüfspitzen KP 200 ist die Stromausgabe in diesem Modus auf 200 A begrenzt.

Ist die Messung aktiv gestartet wartet das Messgerät in diesem Messmodus auf das Aufsetzen der Prüfspitzen auf das Prüfobjekt. Erst wenn die Prüfspitzen sicher und vollständig kontaktiert sind (Spannungs- und Stromkontakt), wird eine Messung ausgeführt. Das heißt, der Prüfstrom wird ausgegeben, beste Messbereiche werden ermittelt und der Widerstandwert gemessen. Die Messung wird dabei automatisch mit der kürzest möglichen Messzeit durchgeführt.

Um den Einsatz der Prüfspitzen Vor-Ort zu vereinfachen wird der aktuelle Status einer Messung wird auch mittels der LED-Statusanzeige und einem Signalton signalisiert.
Das Messergebnis bleibt nun solange im Display anstehend, bis die Prüfspitzen abgenommen werden und der nächste Messvorgang durch aufsetzen der Prüfspitzen aktiviert wird. Die Widerstandsmessergebnisse werden in einer Tabelle angezeigt und vor der möglichen Speicherung können die Ergebnisse eingesehen werden.

Mit dieser ausgefeilten Funktionalität ist ein sicheres, und automatisiertes Arbeiten der Kelvin-Prüfspitzen KP 200 zusammen mit den Widerstandsmessgeräten  PROMET R300/R600 möglich.

Bei weiteren Fragen hinterlassen Sie einen Kommentar oder sprechen Sie uns direkt an.